The Yamabe Problem $\left\{\begin{array}{l}\text { Hunter Stuffluberm } \\ \text { Oct. 2021 }\end{array}\right.$
Recall the famous Uniformitation Thoron, which says that
Every closed Riemannion two-manifoll is conformally equivalent to another with constant sectional curvature.

This is an affirmative cuswer to a natural question. Indeed, a conformal change of metric amounts to a choice of one smooth fraction (tu corformul facts), which on a two manifold is being asked to satisfy one condition: that its scalco curvature, a single function, be constant. Indeed, recall that for a 2 -mfd we have that $R_{m}=\frac{1}{4} S g \otimes g$, so that the scalar curvature determines the sectional curvature.
In higher dimensions, asking for a single conformal factor to control all of the sectional curvatures is highly over determined, since the full curvature tens or depends on more than jest S : Recall that

$$
\operatorname{dim} M=3: \quad R_{m}=R_{i c} \otimes g-\frac{1}{4} S g \otimes g,
$$

and in

$$
d_{(m M} \geqslant y: \quad R_{m}=w+\frac{1}{n-2} \operatorname{Ric}_{0}^{0} \otimes g+\frac{1}{2 n(n-1)} S g \otimes g
$$

where W is the couformlly invariant weyl tensor.
Indeed, Rm has $\sim n^{4}$ component fractions which we are attempting to influence with the one degree of freedom afforded by the conformal factor.

In higher dimensions, the natural result to ask for is therefore
The Yamabe Problem (1960): Let (Mag) be a closed Rm. mfd of dim Man $\geqslant 3$. Can ore find a metric \tilde{g} conformal to g, which has constant scalar curvature?

Fortunately, the answer is yes! However, Yamabe made an error in his proof, and it took about 25 years for the problem to be resolved via the work of Trudinger, Arbin, and Schoen.

Here's how our exposition of this stary will play out:
Part I: Preliminaries
Part II: The Outline of the Argunets
Part III: The Yamabe Problem on the Sphere
Pant IV: Solving the Problem when $\lambda(M)<\lambda\left(S^{n}\right)$
Port V: Reducing to the case $\lambda(M)<\lambda\left(S^{n}\right)$

PART I: Preliminaries
Let (M, g) be a closed $R_{m} . m f j$ of $\operatorname{dim} M=n \geqslant 3$, and suppose that $\tilde{g}=e^{2 f} g$ is a metric conformal to g (here, $f \in C^{\infty}(M)$). Here and throughout, quantities on (M, \tilde{g}) will be written with \sim 's, and corresponding quantities on (M, g) without. We begin by observing how key geometric quantities evolve under conformal changes:

Metric: $g \longmapsto \tilde{g}=e^{2 f} g$ for $f \in C^{\infty}(M) \quad$ Volume: dol $\mapsto e^{n f}$ dual g
Chustoffel Symbols: $\Gamma_{i j}^{n}=\frac{1}{2} g^{h l}\left(\partial_{i} g_{e j}+\partial_{j} g_{e i}-\partial_{e} g_{i j}\right)$

$$
\longmapsto \tilde{\Gamma}_{i j}^{k}=\Gamma_{i j}^{k}+\frac{1}{2}\left(\delta_{j}^{k} \partial_{i} f+\delta_{i}^{k} \partial_{j} f-g_{i j} g^{k l} \partial_{\ell} f\right)
$$

Riemann Cusunture: Note: Our Laplacian Conversion is $\Delta f=\operatorname{div}($ grad f $)=\operatorname{tr} \nabla^{2} f$.

$$
R_{m} \longmapsto \tilde{R_{m}}=e^{2 f}\left\{R_{m}-\left(\nabla^{2} f\right) \otimes g+(\partial f \otimes \partial f) \otimes g-\frac{1}{2}\left(\left.\Delta f\right|_{g} ^{2} g \otimes g\right\}\right.
$$

Riccio Curvature:

$$
\text { Ric } \longmapsto \widetilde{R_{i c}}=\operatorname{Ric}-(n-2)\left(\nabla^{2} f\right)+(n-2)(d f \oplus d f)-\left\{\Delta f+(n-2) /\left.d f\right|_{g} ^{2}\right\} g
$$

Scalar Curvature:

$$
S \longmapsto \tilde{S}=e^{-2 f}\left\{S-2(n-1) \Delta f-(n-1)(n-2)|\partial f|_{g}^{2}\right\}
$$

Schouten Tensor: $A=\frac{1}{n-2}\left\{\right.$ Rec $\left.-\frac{s}{2(n-1)} g\right\}$

$$
\longmapsto \tilde{A}=A-\nabla^{2} f+\partial f \otimes d f-\frac{1}{2}|d f|_{g}^{2} g
$$

Weyl Tensor: $\quad \omega=R_{m}-A \otimes g \mapsto \tilde{w}=e^{2 f} W$
Notice! This last formula shows that $W T$ is conformally invariant!
Some facts about the weyl tensor the will be important later on we that

- If $n=3, W \equiv 0$
- If $n \geqslant 4, w(p)=0 \rightarrow(M, g)$ is locally conformelly flint at p.

Now, consider the formula above for scalar curvature. We con simplify it if we write $e^{2 f}=\varphi^{p-2}$, where from here on $p:=2 n /(n-2)$. Then

$$
\tilde{S}=\varphi^{1-p}\left\{-c_{n} \Delta \varphi+S \varphi\right\} \equiv \varphi^{1-p} \square \varphi
$$

where $c_{n}=\frac{4(n-1)}{n-2}$ and $\square:=-c_{n} \Delta+S$ is the conformed Laplacian.
From this, we see that solving the Yamabe Problem is equivalent to finding a smooth, positive solution to the nolinear eigenvalue problem
(The Yamabe Equation)

$$
\square \varphi=\lambda \varphi p-1
$$

for some $\lambda \in \mathbb{R}$, which will be the (constant!) scalar curvature of the new metric $\tilde{g}=\varphi^{p-2} g$.
As an aside, \square is conformably inverimat in the sense that under a conform change $\tilde{g}=e^{2 f} g$,

$$
\tilde{\square}_{n}=e^{-\frac{n+2}{2} f} \square\left(e^{\frac{n-2}{2}} u\right) \quad \forall n \in C^{\infty}(M) \text {. }
$$

If instead we write $\tilde{g}=\varphi^{p-2} y$, then the conformal invariance takes the form

$$
\tilde{\square}\left(\varphi^{-1} u\right)=\varphi^{1-p} \square u .
$$

PART II: The Outline of the Arguments:
Yamabe's first observation was that is the Eiler-Lagrage equation for the Q-functioned

$$
Q(\varphi) \equiv Q_{g}(\varphi):=\frac{\int c_{n}|\nabla \varphi|^{2}+S \varphi^{2} \partial v o l_{g}}{\|\varphi\|_{\rho}^{2}}=\frac{\int \tilde{S} \delta v o l \tilde{j}}{v o l \tilde{j}(M)^{2 / p}}=: Q(\tilde{g})
$$

with $\tilde{g}=\varphi^{2-\rho} g$ varying over the conformal class of g. In the third equality, me use $\tilde{S}=\varphi^{1-p} \square \varphi=\left\{-c_{n} \varphi \Delta \varphi+\varphi^{2}\right\} \varphi^{-\rho}$ and dol $\tilde{g}=\left(\varphi^{p-2}\right)^{\frac{n}{2}}$ dual $_{g}=\varphi^{\rho}$ dual.
Claim: Let $\varphi \in W^{1,2}(M)$ be a critical point of Q. Then there is some $\lambda \in \mathbb{R}$ st. φ satisfies Moreover, if φ is a minimizer and $\|u\|_{p}=1$, then

$$
\begin{aligned}
& \lambda=\lambda(M):=\inf \left\{Q(\varphi): \varphi \in W^{1,2}(M)\right\} \\
&\binom{\text { Sine } Q}{Q(|\varphi|)=Q(\varphi) \text { cts on } w^{1,2}} \\
&:=\inf \left\{Q(\varphi): \varphi \in C^{\infty}\left(M, \mathbb{R}^{>0}\right)\right\} \\
&=\inf \{Q(\tilde{g}): \tilde{g} \text { is con it })
\end{aligned}
$$

Remark: $\lambda(M)$ is called the Yamabe Constant, and is evidently an invariant of the conformal class of (M, g) sine $Q_{g}(\varphi \varphi)=Q_{\varphi \varphi^{-2}}(\Psi)$.
Proof of (lain: Let $\xi \in C_{c}^{\infty}(M)$. Thu if $\varphi \in W^{12}(M)$ is a cortical point of Q,

$$
\begin{aligned}
O & =\left.\frac{d}{d t}\right|_{t=0} Q(\varphi+t \xi)=\left.\frac{\alpha}{J t}\right|_{t=0} \frac{\int_{M} c_{n}|\nabla \varphi+t \nabla \xi|^{2}+S(\varphi+t \xi)^{2} d u l}{\|\varphi+t \xi\|_{p}^{2}} \\
& =\left.\frac{\alpha}{d t}\right|_{t=0} \frac{\int c_{n}|\nabla \varphi|^{2}+2 c_{n} t\langle\nabla \varphi, \nabla \xi\rangle+c_{n} t^{2}|\nabla \xi|^{2}+s \varphi^{2}+2 t S \varphi \xi+t^{2} S \xi^{2} d u d g}{\|\varphi+t \xi\|_{p}^{2}} \\
& =\frac{\left.\|\varphi\|_{p}^{2}\left\{2 \int c_{n}\langle\nabla \varphi, \nabla \xi\rangle+s \varphi \xi \delta v o l_{y}\right\}\right\}\left\{\int c_{n} \mid \nabla \varphi \|^{2}+S \varphi 2 d v a l g\right\} 2\|\varphi\|_{p}^{2-p} \int \xi \varphi^{\varphi-1}}{\|\varphi\|_{p}^{4}}
\end{aligned}
$$

$$
\longrightarrow 0=\frac{2}{\|\varphi\|_{p}^{2}} \int \xi\left(\square \varphi-Q(\varphi) \frac{\varphi^{p-1}}{\|\varphi\|_{p}^{p-2}}\right) d v o l_{g}
$$

By arbitrariness of ξ, we conclude that φ solves \Leftrightarrow with $\lambda=\frac{Q(\varphi)}{\|\varphi\|_{p}^{p-2}}$. If now φ is a minimizer with $\|\varphi\|_{p}=1$, then $\lambda=Q(\varphi)=\lambda(M)$.

We should note that this variational problem yields a finite $\lambda(M)$, since by the Höltar and Sobclev Inequalities

$$
\frac{\int c_{n} \mid \nabla \varphi \|^{2}+S \varphi^{2} \partial v o l_{g}}{\|\varphi\|_{p}^{2}} \geqslant c-\|S\|_{n / 2}>-\infty
$$

while $\lambda(M)<Q(1)=\frac{\|S\|_{1}}{V o l(m)^{2 / 2}}<\infty$.
So, to solve th Yamabe Problem, it suffices to find a minimizer of $\lambda(M)$. Howeres, we cant just use the direct method because, amusingly, the exponent $p=2 *=\frac{2 n}{n-2}$ tut appears in Yamabe's Equation is exactly the critical sobolev exponent where the compact embedding $w^{\prime \prime 2} \longrightarrow L P$ fails.

As we will see later, Yamabe's approach was to study the sub-catial problem with exponent $q<p=2^{*}$, which is solvable by the direct method. The hope is then that the subcritical solutions connege to a solution of the Tamable Equation with critical exponent. Yamabe had claimed a proof of this in 1960 , but in 1968 Trusinger discovered a false claim - Yamabe had asserted the validity of unifum $C^{2, \alpha}$ estimates for the sequence at subcritical solutions, but this even fails on ($\n, gro) ! It would take until 1984 far Tridiojer, Aubin, Schoen, and others to rectify the argument, via the following results:
Theorem: (Yamabe, Trudinger, Aubin) If $\lambda(M)<\lambda\left(S^{n}\right)$, then a positive, smooth minimizer of $\lambda(M)$ exists, solving the Yomabe Problem on M.
The Idea: Strut inequality gives us room to account for error terms as a result of the lack at compactness.

Theorem: (Aubin) If (M, g) has $\operatorname{dim} M=n \geqslant 6$, and of M is not locally conformally flat at some $p \in M$, then $\lambda(M)<\lambda\left(S^{n}\right)$.

The Idea: By using test functions inspired by the res dution of the problem on S^{n}, one con show directly, that $\lambda(M) \leqslant Q(\varphi)<\lambda\left(\Phi^{n}\right)$.
Theorem: (Schoen) If (M, g) has $\operatorname{diM}=n \in\{3,4,5\}$, or if M is locally conformally flat at some point, then $\lambda(M)<\lambda\left(\rho^{n}\right)$. (combe wo th \leq and rigidly whin sphere)'
The Idea: The remainly causes con't be tackled by local estimates, but Schoen discovered haw to build the desired test function from the Green's function of \square. Fascinatingly, his port relies on the PMT from mathematical relativity.

Part III: The Yamabe Problem on the Sphere, and the Sharp Sobolev Inequity
The case $M=\mathbb{S}^{n}$ is interesting because we can not only give an explicit solution to the variational problem, but also because it is central to understanding the problem for general M. Even further, it has deep ties to the Sobolev Inequality, making the Yamabe Problem on \mathbb{S}^{n} highly relevant to analysis at large!

In this section, we will see how the problem is resolved on \mathbb{S}^{n} : the standard round metric minimizes the Q-funtional, and its conformal metrics are the only metrics on S^{n} with constant scalar curvatwe. We will in particular see how the Yamabe Problem on F^{n} is equivalent to the problem of determining the optimal constant for the Soboler Inequality an \mathbb{R}^{n}. This gives two possible methods for solving the Yamabe Problem un gi: either directly or by finding the sharp sobolev constant. Lastly, we show that $\lambda\left(5^{n}\right)$ provides an upper bow for $\lambda(M)$ with M any compact Rm.mfo. of $\operatorname{dim} M \geqslant 3$.

Stereographic Projection:
Consider $S^{n} \hookrightarrow \mathbb{R}^{n+1}$ with its roma metric g_{0} indued by $g_{s t d}$ on \mathbb{R}^{n+1}. Let $N=(0, \ldots, 1)$ be the north pole of S^{n}, and recall that the mopping $\psi: g^{n} \backslash N \rightarrow \mathbb{R}^{n}$ given by

$$
\left(s^{1}, \ldots, s^{n}, \xi\right) \longmapsto\left(x^{1}, \ldots, x^{n}\right) \quad, \quad x^{i}=\frac{s^{i}}{1-\xi}
$$

is a conformal diffeomorphism, with $\left(\psi^{-1}\right)^{*} g_{0}=4\left(1+|x|^{2}\right)^{-2} g_{s+d}$. For notational convenience, let $\rho=\Psi^{-1}: \mathbb{R}^{n} \rightarrow \delta^{n} \backslash\{N\}$.

We can also write this as $\rho^{*} g_{0}=4 u_{1}^{p-2} g_{s+d}$, where for $\alpha>0$

$$
u_{\alpha}(x):=\left(\frac{\alpha^{2}+|x|^{2}}{\alpha}\right)^{\frac{2-n}{2}}
$$

and as always, $p=2^{*}=\frac{2 n}{n-2}$. The point of introducing u_{α} is to describe how go changes under conform diffeom ouphiums of the sphere. Indeed, the group at conform diffeomorphisms of g^{n} is generated by the rotations in $\theta(n+1)$, and maps of the form $\Psi^{-1} \tau_{\cup} \Psi, \Psi^{-1} S_{\alpha} \Psi$, with $\tau_{v} \delta_{\alpha}: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}$ translation by $v \in \mathbb{R}^{n}$ and dilation by $\alpha>0$, respectively. we have, in particular, that

$$
\left(\rho \cdot \delta_{\alpha}\right)^{*} g_{0}=\delta_{\alpha}^{*} \cdot \rho^{*} g_{0}=4 u_{\alpha}^{p-2} g_{s+\alpha}
$$

Thee are now two ways in which we may proceed, so lets explue both. In short, the \mathbb{S}^{n} Yamabe Problem is equivalent to tu problem of sharpening the Sobotev Inequality on \mathbb{R}^{n}. One can thus proceed by solving one problem or the other.

Route 1 to Solving th Yamabe Problem on gi' n : (The Talenti-Aubin Approach)
Recall the famous Sobolev Inequally on $\mathbb{R}^{n}: \forall \varphi \in \underset{c}{C_{c}^{\prime}\left(\mathbb{R}^{n}\right)} \begin{gathered}\omega^{112}\left(\mathbb{R}^{n}\right)\end{gathered}, 1 \leq p<n, p^{*}=\frac{n p}{n-p}$,

$$
\|\varphi\|_{p^{*}} \leqslant C_{n}\|\nabla \varphi\|_{p} .
$$

It turns out tut the conformal invariance of $\lambda\left(\Phi^{n}\right)$ makes the resolution of the Yamabe Problem on g^{n} equivalent to the task of determining the sharp coefficient C_{n} in this Sobolev Inequality.
To see this, let $\varphi \in C^{\infty}\left(\mathbb{S}^{n}\right)$, and define $\bar{\varphi}:=u_{i} \rho^{*} \varphi$. Then recalling the facts that

- $\rho:\left(S^{n} \backslash\left\{N \xi^{\prime}, g_{0}\right) \rightarrow\left(\mathbb{R}^{n}, \varphi_{u} p^{-2} d x\right)\right.$ is an isometry;
- $\rho^{*}\left(\nabla^{\rho^{*} g_{0}} \rho^{*} \varphi\right)=\nabla^{g_{0}} \varphi$
- $Q_{g}(\lambda \varphi)=Q_{g}(\varphi)$ for ency $\lambda \in \mathbb{R} \backslash\{0\}$

$$
-Q_{g}(\sigma \varphi)=Q_{\sigma^{0-2}}(\varphi) \quad \forall \sigma \in C^{\infty}\left(M: \mathbb{R}^{20}\right)
$$

we obtain

$$
\begin{aligned}
Q_{g_{s t r}}(\bar{\varphi})=Q_{g_{s+2}}\left(u_{1} \rho^{*} \varphi\right) & =Q_{g_{s t i}}\left(u^{\frac{1}{p-2}} u_{1} \rho^{*} \varphi\right) \\
& =Q_{4} u_{1}^{p-2} g_{s+t}\left(\rho^{*} \varphi\right) \\
& =Q_{\rho^{*} g_{0}}\left(\rho^{*} \varphi\right) \\
& =Q_{g_{0}}(\varphi)
\end{aligned}
$$

To prove \bullet, we compute directly from the definition of Q and use the equation $\square \varphi=\bar{S} \varphi p-1$. To prove $=$ we again comp -te directly from $Q_{g_{0}}$, using - and the fact the S is isometry invainent to compote that

$$
\begin{aligned}
Q_{g_{0}}(\varphi) & =\frac{\int_{g^{n} \backslash\{N\}} C_{n}|\nabla \varphi|_{g_{0}}^{2}+S \varphi^{2} d v a l g_{0}}{\left(\int_{S^{n} \backslash\{N\}}|\varphi|^{p} d v o l g_{0}\right)^{2 / p}} \\
& =\frac{\int_{\mathbb{R}^{n}} c_{n} \mid \nabla^{\left.p^{*} \xi_{0} \rho^{\alpha} \varphi\right|_{\rho^{2} g_{0}} ^{2}+\rho^{*} S_{\rho^{\prime} g_{0}}\left(\rho^{a} \varphi\right)^{2} d v u l_{\rho^{*} g_{0}}}}{\left(\int_{\mathbb{R}^{n}}\left|\rho^{n} \varphi\right|_{\rho^{n} g_{0}}^{\rho} \partial v o l_{\rho^{n} g_{0}}\right)^{2 / p}} \\
& =Q_{\rho^{*} g_{0}}\left(\rho^{\alpha} \varphi\right) .
\end{aligned}
$$

The upshot is that $Q_{g_{s+0}}(\bar{\varphi})$ has a simpler for, as the scalar curvature of $\left(\mathbb{R} n, g_{s+d}\right)$ vanishes. Thus,

$$
\begin{aligned}
\lambda\left(S^{n}\right)=\inf _{\varphi} Q_{S^{n}, 0} & (\varphi)
\end{aligned}=\inf _{\varphi \in C^{\infty}\left(S^{n}\right) Q_{\mathbb{R}^{n}, g / \mu}(\bar{\varphi})} \begin{aligned}
& =\inf _{\varphi \in C^{\infty}\left(\delta^{n}\right)} \frac{\int_{\mathbb{R}^{n}}|\nabla \bar{\varphi}|^{2} d x}{\left(\int_{\mathbb{R}^{n}}|\bar{\varphi}|^{p} d x\right)^{4} p}
\end{aligned}
$$

By approximations $\bar{\varphi}$ with cutoff functions, it follows that

$$
\lambda\left(S^{n}\right)=\inf _{\varphi \in C_{o}^{\infty}\left(\mathbb{R}^{n}\right)} \frac{C_{n}\|\nabla \varphi\|_{2}^{2}}{\|\varphi\|_{p}^{2}}
$$

Theovern: (Talent, Aubin): Let $n \geqslant 3$, and

$$
\sigma_{n}^{2}:=\inf \left\{\frac{\|\nabla u\|_{2}^{2}}{\|u\|_{p}^{2}}: u \in w^{1,2}\left(\mathbb{R}^{n}\right)\right\}
$$

Then $\sigma_{n}^{2}=c_{n}^{-1} \cdot n(n-1) \omega_{n}^{2 / n}$, and minimizes are exactly the constant multiples and translates of u_{α} as affined above.
This, the shop Sobilou Inequality on \mathbb{R}^{n} is

$$
\|u\|_{p} \leqslant \frac{1}{\sigma_{n}}\|\nabla u\|_{2}=\frac{c_{n}}{\left[n(n-1)^{1 / 2} \omega_{n} / n\right.}\|\nabla u\|_{2} \quad \forall u \in w^{1 \cdot 2}\left(\mathbb{R}^{n}\right)
$$

So, Talenti and Aubin thus solved the Yumabe Problem on the Sphere, and gave an explicit value for $\lambda\left(\delta^{n}\right)$. Their proofs (intrentently discovered but essentially similar) consist mostly of technical GMT.
Corollin: If $\left(M_{1}^{n}\right)$ is an closed Rm.mff with $n \geqslant 3$, then $\lambda(M) \leqslant \lambda\left(\mathbb{S}^{n}\right)$.
This is obtain by testing Q_{g} with the u_{α} above, localized to noinl balls.

Part IV: Resolving the Yamabe Problem when $\lambda(M)<\lambda\left(\delta^{n}\right)$.
This put represents the most analytic site of the problem, and just. as in the last port, thee are multide paths by which me max proceed. Weill out line both, which seek to prove the following:
Theorem: (Yamabe, Trudinger, Aubin)
Suppose $\lambda(M)<\lambda\left(\delta^{n}\right)$. Then a minimizer of $\lambda(M)$ exists, thus solving the Yamabe problem on M.
The intuition here is that although the embedding $\omega^{1,2}(M) \hookrightarrow L^{2+}(M)$ is not compact, a minimizing sequence "which "fails to converge to a minimizer would have to concentrate, on "bubble", at some point of M, and this would add a $\lambda\left(\mathbb{S}^{n}\right)$ to the functions. Since $\lambda(m)<\lambda\left(S^{n}\right)$, this sort of concentration shouldn't be able to occurs, and we can hope for convergence to a minimizer.

The first approach we'll outline is doe to Lions' in 1984, as it beautifully exhibits the bubbling phenomenon. In fact, it says generally that a bounded sequence in $L^{2^{* \prime}}(M)$ which doesn't converge strongly must concentrate at countably many points, and that the amount of concentration at each point con be controlled via a sibder-type incqualty for measures. We'll use the Sharp Sobolev Fneqully on \mathbb{R}^{n} to obtain this control. Thus, we conclude that even though we lack compactress, we still have a pretty precise under staving of how bailly compactness fails, and can use the strict inequality in $\lambda(m)<\lambda\left(S^{n}\right)$ to absorb the effects of the failure.

The second approach well detail is closer to Yamube's original approach, and is due to Yamabe and completed by Trodinger and Aubin. The idea here is very interesting from a PDE perspective, and is based on the idea that the subcritical equations

$$
\begin{aligned}
& \square \varphi=\lambda_{s} \varphi^{s-1} \\
& \text { Jibed functionals } \\
& Q^{s}(\varphi)=E(\varphi) /\|\varphi\|_{S}^{2}
\end{aligned}
$$

associated to the perturbed functionals

$$
\left(2 \leqslant s<p=2^{*}\right)
$$

are easy to solve (ie., positive, smooth solutions φ_{s} with $\lambda_{s}=\inf _{C^{\prime o}(M)} Q^{s}(\varphi)$ always exist). The jifficilly, and the site of Yamabe's error, is in showing that these subcritical solutions converge to a solution of the critical equation with $s=p=2^{*}$. He had claimed the validity of a vifom $c^{2, \alpha}$ estimate for the φ_{s}, in the hope of applying Arzela-Ascoli- to obtain a limit. However, such a uniform estimate is false, in particular on $\n ! Nonetheless, when $\lambda(m)<\lambda\left(S^{n}\right)$, these estimates do hold, as there is space to allow fo the error terms.

The First Approach: Lions' Concentration-Compachess Lemma
Lemma: (Lions)
Let $\left\{u_{k}\right\} \subseteq W^{1,2}(M)$ be unifumly bounded, so that $u_{k} \rightarrow u \in w^{1,2}(M)$. U_{p} to subsequences,

$$
\begin{aligned}
& \nu_{n}:=\left|\nabla u_{k}\right|^{2} v_{v o l} l_{j} \rightarrow \rho \\
& v_{n}:=\left|u_{k}\right|^{2^{*}} d_{v_{0} l_{g}} \rightarrow v
\end{aligned}
$$

Moreover,

$$
\begin{aligned}
& \nu \geqslant|\nabla u|^{2} \delta v o l_{g}+\sigma_{n}^{2} \sum_{J} \alpha_{j}^{2 / 2^{*}} \delta_{\rho_{j}} \\
& v=|u|^{2 *} \partial v o l_{g}+\sum_{J} \alpha_{j} \delta_{p_{j}}
\end{aligned}
$$

where J is countable and $p_{j} \in M, \alpha_{j} \in(0, \infty)$.
Before presenting Lions' proof of the above, Let's see how it helps us prove the main theorem of this section:

Proof of th Theorem:
Let $\left\{\varphi_{n}\right\} \subset W^{1,2}(M)$ be a minimizing sequence for $\lambda(M)$, and $W \log$ take $\left\|\varphi_{h}\right\|_{2^{*}}=1$. By the Sobilev Embedding Theorem, $w^{1,2}(M) \subset \subset L^{2}(M)$, so up to a subsequence $\varphi_{h} \rightarrow \varphi \in L^{2}(M)$, while $\varphi_{n} \pm \varphi$ in both $W^{1,2}(M)$ and $L^{2^{*}}(M)$ by Banach-Alaoglu.
In particulion, we know that $\|\varphi\|_{2^{*}} \leq \liminf \left\|\varphi_{k}\right\|_{2^{*}}=1$, so $\exists t \in[0,1]$ so that $\|\varphi\|_{2^{*}}^{2^{2}}=t$. We aim to show that $t=1$, because then we know that $\varphi_{k}^{2 *} \longrightarrow \varphi$ in $L^{2^{*}}(M)$, and this will allow us to conclude that φ is a minimizes of $\lambda(M)$ in $\omega^{1,2}(M)$.

Indeed, φ minimizes $\lambda(M)$ of it minimizes

$$
E(\varphi)=\int c_{n}|\nabla \varphi|^{2}+S \varphi^{2} d_{v o l g}-\lambda(M)\|\varphi\|_{2^{*}}^{2}
$$

on $\omega^{1.2}(M)$ - just re-write this as $E(\varphi)=\{Q(\varphi)-\lambda(M)\}\|\varphi\|_{2 *}^{2}$. Evidently, our infimizing sequence $\left\{\varphi_{n}\right\}$ for Q is an infimizing sequence fo E, and since

$$
\begin{aligned}
E(\varphi) & =\int c_{n}|\nabla \varphi|^{2}+S \varphi^{2} \partial v_{0} l g-\lambda(M) \\
& \leq \liminf \left\{\int c_{n}\left\|\varphi_{k}\right\|^{2}+S \varphi_{k}^{2} \partial v_{0} l g-\lambda(M)\left\|\varphi_{k}\right\|_{2^{*}}^{2}\right\} \\
& =\liminf E\left(\varphi_{k}\right)
\end{aligned}
$$

we see that $\varphi \in W^{1,2}(M)$ is a minimizer of E, and so also of Q. Here we notice how crucial it is that we have strong convergence in $L^{2^{t}}$ for φ_{k}. If the limit φ were to lose mass, then we could lose lower semicontinuity of E, and wouldn't be able to conclude that φ minimizes.

So, let's turn to showing that $t=\|\varphi\|_{2^{*}}^{2^{\pi}}=1$:
By Lions' Lemma,

$$
\geqslant \int c_{n}|\nabla \varphi|^{2}+S \varphi^{2} d_{v o l} g+c_{n} \sigma_{n}^{2} \Sigma_{J} \alpha_{j}^{2 / 2 *}
$$

$$
\left(\lambda\left(\mathbb{S}^{n}\right)=c_{n} \sigma_{n}^{2}\right)
$$

$$
\lambda(M)=\lim Q\left(\varphi_{k}\right)=\lim \int c_{n}\left|\nabla \varphi_{k}\right|^{2}+S \varphi_{k}^{2} J_{v o l}^{g}
$$

$$
=Q(\varphi) t^{2 / 2 *}+\lambda\left(S^{n}\right) \sum_{J} \alpha_{j}^{2 / 2 *}
$$

$$
\geqslant \lambda(M) t^{2 / 2 *}+\lambda\left(S^{n}\right) \Sigma_{J} \alpha_{j}^{2 / 2 t}
$$

$$
=\lambda(m) t^{2 / 2 *}+\lambda\left(S^{n}\right)(1-t)^{2 / 2 *} \sum_{J}\left(\frac{\alpha_{j}}{1-t}\right)^{2 / 2 *}
$$

(since $2 / 2 * \in(0,1]$)

$$
\geqslant \lambda(M) t^{2 / 2^{*}}+\lambda\left(S^{n}\right)(1-t)^{2 / 2^{*}}\left(\sum_{J} \frac{\alpha_{j}}{1-t}\right)^{2 / 2^{*}}
$$

$$
=\lambda(M) t^{2 / 2 *}+\lambda\left(S^{n}\right)(1-t)^{2 / 2 t}
$$

since $1 \equiv \lim v_{k}(M)=\nu(M)=\|\varphi\|_{2^{*}}^{2 *}+\sum_{J} \alpha_{j}=t+\sum_{J} \alpha_{j}$. Applying our assumption that $\lambda\left(\mathbb{S}^{n}\right)>\lambda(M)$, we obtain

$$
\lambda(m) \geqslant t^{2 / 2 x} \lambda(M)+\lambda\left(S^{n}\right)(1-t)^{2 / 2 t} \geqslant \lambda(M)\left\{t^{2 / 2 t}+(1-t)^{2 / 2 \pi}\right\} \geqslant \lambda(M)
$$

Equality \geqslant tells us that $t \in\{0,7\}$. If $t=0, \geqslant$ would be strict. Thus $t=1$.

Now, we have in hand a minimizer $\varphi \in W^{1,2}(M)$ of Q. By the standard repertoire or elliptic regularity, which weill see when we consider the second approach, it follows that φ is 5 moot and positive, thus solving the Yamabe Problem when $\lambda(M)<\lambda\left(\delta^{n}\right)$.

With this in hand, lets now return to Lions" Concentration-Compacturss Lemma, and show why if holds.

Proof of Lions' Lemma: The proof of the result on M fallows from the corresponding result on a bounded subset of \mathbb{R}^{n}, using normal coordinates and a partition of unity. Thus, its most instructive to focus on the proof of the result in \mathbb{R}^{n}.

Set $v_{k}:=\left(u_{k}-u\right), w_{k}:=\left(\left|u_{n}\right|^{2^{*}}-|u|^{2^{*}}\right) d x, \tilde{N}_{n}:=\left|\nabla v_{k}\right|^{2} d x$. By assumption, $V_{k} \rightarrow 0$ in $W^{1 / 2}$ and $L^{2 *}$. By the uniform $W^{1 / 2}$ bores on U_{n}, u, the compactness theorem fo Radon weasures yields Radon measures ω and $\tilde{N} s$, that $\omega_{n} \longrightarrow \omega$ and $\vec{J}_{n} \longrightarrow \tilde{\sim}$.

If can be shown that $\omega_{n}=\left|v_{n}\right|^{2^{*}} d x+\theta(1)=\left|u_{n}-u\right|^{2^{*}} d x+\theta(1)$.
Fix $\xi \in C_{c}^{\infty}\left(\mathbb{R}^{n}\right)$, and use the Sobolev Inequality to obtain

$$
\left.\begin{array}{rl}
\int \xi^{2^{*}} d \omega=\lim \int\left(\xi\left|v_{k}\right|\right)^{2+} & d x
\end{array}\right)=\liminf \frac{1}{\sigma_{n}^{2 x}}\left(\int\left|\nabla\left(\xi v_{n}\right)\right|^{2} d x\right)^{2^{k} / 2} .
$$

N ore tut this computation technically is true up to a subsequence of the v_{n} on which the compact empaling $w, 2 \subset \subset L^{2}$ ensures $v_{n} \rightarrow 0$, yielding

$$
\begin{gathered}
\left\|\nabla\left(\xi v_{n}\right)\right\|_{2} \leq\left\|\xi \nabla v_{k}\right\|_{2}+\left\|v_{k} \nabla \xi\right\|_{2} \\
\longrightarrow \quad \liminf \left\|\nabla\left(\xi v_{n}\right)\right\|_{2} \leq \liminf \left\|\xi \nabla v_{n}\right\|_{2}=\|\xi\|_{L^{2}\left(\mathbb{R}^{n}, \tilde{\rho}\right)} .
\end{gathered}
$$

This establishes a "reverse Höldr Inequality" for w and $\tilde{\sim}$.

$$
\sigma_{n}\|\xi\|_{L^{2^{\alpha}}\left(\mathbb{R}^{n}, \omega\right)} \leqslant\|\xi\|_{L^{2}\left(\mathbb{R}^{n}, \tilde{r}\right)} \quad \forall \xi \in C_{c}^{\infty}\left(\mathbb{R}^{n}\right)
$$

We apply this to a sequence of $S_{k} \in C_{c}^{\infty}\left(\mathbb{R}^{n}\right)$ approximating X_{Ω} fo an open $\Omega \subseteq \mathbb{R}^{n}$, which yields

$$
\sigma_{n}^{2} \omega(\Omega)^{2 / 2 *} \leqslant \tilde{\mu}(\Omega)
$$

The non-linerity of this control is what forces w to be supported on a countable set of atoms. Indeed, $\tilde{\sim}$ is finite, and so can have at most countably many atoms $\left\{p_{j}\right\}$. If $x \in \mathbb{R}^{n} \backslash\left\{p_{j}\right\}$, then we can find an open $\Omega \exists x$ with $\tilde{N}(\Omega) \leq \sigma_{n}^{2}$, and so

$$
1 \geqslant \sigma_{n}^{-2} \sim(\Omega) \geqslant \omega(\Omega)^{2 / 2 n} \geqslant \omega(\Omega)
$$

Thus, $\omega \ll \widetilde{\sim}$ on $\mathbb{R}^{n} \backslash\{p$,$\} , and the Lebesgne-Besicoutch Theorem tells us$ that $D_{j} w \equiv 0$ ae: At any $x \in \mathbb{R}^{n} \backslash\left\{p_{j}\right\}$

$$
D_{\tilde{\sim}} \omega(x)=\lim _{r>0} \frac{\omega\left(B_{r}(x)\right)}{\tilde{\sim}\left(B_{r}(x)\right)} \leqslant \liminf _{r \rightarrow 0} \sigma_{n}^{-2^{*}} \mu\left(B_{r}(x)\right)^{2^{*} / 2-1}=0
$$

So, $\omega=\left(D_{\tilde{\mu}} \omega\right) \tilde{\sim}+\omega_{\tilde{N}}^{s}=\omega_{\tilde{j}}^{s}$, where the singular part $\omega \underset{\sim}{s}$ is supported on the atomic p oints $\left\{p_{j}\right\}$. Thus,

$$
\omega=\Sigma_{J} \alpha_{j} \delta_{p_{j}}
$$

which proves that, as desired,

$$
\nu_{n}:=\left|u_{n}\right|^{2^{*}} \delta x \rightarrow|u|^{2^{*}} d x+\sum_{J} \alpha_{j} \delta_{p_{j}} .
$$

To prove the remaining statement, fix one of the P_{j} and apply our reave Höldr Inequity above with $\xi_{r} \in C_{c}^{\infty}\left(\mathbb{R}^{n}\right)$ satisfying $\xi_{r}\left(p_{j}\right)=1, \quad \operatorname{spt} \xi_{r} \subseteq \bar{B}_{r}\left(p_{j}\right)$ as $r \longrightarrow 0$:

$$
\begin{aligned}
\sigma_{n}^{2} \alpha_{j}^{2 / 2 \pi}=\sigma_{n}^{2} \omega\left(p_{j}\right)^{2 / 2 \pi} & =\lim _{r>0} \sigma_{n}^{2}\left(\int \xi_{r}^{2 \pi} \partial \omega\right)^{2 / 2+} \\
& \leq \liminf _{r \rightarrow 0} \int \xi_{r}^{2} \partial \tilde{\sim} \\
& =\tilde{\sim}\left(p_{j}\right) .
\end{aligned}
$$

Thus,

$$
\tilde{\mu} \geqslant \sigma_{n}^{2} \sum_{J} \alpha_{j}^{2 / 2 *} \delta_{p_{j}}
$$

Now, observe that

$$
\begin{aligned}
\tilde{\mathcal{N}}_{n}=\left|\nabla u_{k}-\nabla u\right|^{2} d x & =\left(\left|\nabla u_{k}\right|^{2}+|\nabla u|^{2}-2\left\langle\nabla u_{n}, \nabla u\right\rangle\right) d x \\
& =\mu_{k}+\left(|\nabla|^{2}-2\left\langle\nabla u_{n}, \nabla u\right\rangle\right) d x,
\end{aligned}
$$

so by uniqueness of weak limits

$$
\mu-|\nabla u|^{2} d x=\widetilde{\sim}
$$

and hence $\quad \mu \geqslant|\nabla u|^{2} d x+\sigma_{n}^{2} \sum_{J} \alpha_{j}^{2 / 2 t} \delta_{p_{j}}$

Part I: Reducing to the Case $\lambda(M)<\lambda\left(\mathbb{S}^{n}\right)$.
In this final port, we showcase the results of Abbin and Schuen which together filly resolve the Yamake Problem. The hyp theses of their results perfectly dovetail, and consist of showing that we can find suitable test finctives on M (which come from the sphere in Aubins case, and from the Green's operates of \square in Schoen's) which have $Q<\lambda\left(S^{n}\right)$. Let's start with Aubin's result:
Theorem: (Aubin) If (M, y) has $\operatorname{dim} M=n \geqslant 6$, and if M is not locally conforndly flat at some $p \in M$, then $\lambda(M)<\lambda\left(\mathbb{S}^{n}\right)$.
To prove it, weill utilize the following extremely useful construction:
Theorem: (Graham) Conformed Normal (coordinates
Let M be a $R m \mathrm{mfJ}$ and $P \in M$. For each $K \geqslant 2$, thee is a conformer metric g on M such that

$$
\operatorname{det} g=1+O(r k)
$$

where $r=|x|$ is the radial distance in g-nome coorduntes at p.
If $K \geqslant S$, then in these coordinates we also have $S=\theta\left(r^{2}\right)$, and $\Delta S=|w|^{2} / 6$ at p.
Remark: The idea hae is that noiml coordinates me already quite nice fur may computations, but we have even more freedom to search for the best nounal coodinter in an entire conformal class, since $\lambda(M)$ is invariant.
Proof of Aubin's Theorem: Let $p \in M$ be a p int at which $W(p) \neq 0$, and fix conformal nome coordinates at p fo $K \geqslant 2$ as big as we need in the arguments to follow. Suppose $B_{2 p}(p)$ is a normal ball contained in the coordunte patch, and fix a cutoff function $\eta \in C^{\infty}(M)$ with

$$
\left\{\begin{array}{l}
x_{B_{p}} \leq n \leq x_{B_{2 \rho}} \\
|\nabla u| \leq \rho^{-1}
\end{array}\right.
$$

Now, let $\varphi(r)=\left\{\begin{array}{cc}\eta(r) u_{\varepsilon}(r) & r \leq 2 p \\ 0 & r \geqslant 2 p\end{array} \quad \in C^{\infty}(M)\right.$
where $u_{\varepsilon}(x)=\left(\frac{\varepsilon}{\varepsilon^{2}+|x|^{2}}\right)^{\frac{n-2}{2}}$ from earlier. We will show that $\varepsilon>0$ can be chosen S_{0} small that $Q(\varphi)<\lambda\left(S^{n}\right)$.
Note tut by the work ot Talent and Aubin, we know that

$$
\lambda\left(\delta^{n}\right)=\frac{\int_{\mathbb{R}^{n}}\left|\nabla u_{\varepsilon}\right|^{2}}{\left\|u_{\varepsilon}\right\|_{2^{+}}^{2}}=n(n-2)\left(\int_{\mathbb{R}^{n}} u_{\varepsilon}^{2^{*}}\right)^{2 / n}
$$

since me can compute that $-\Delta u_{\varepsilon}=n(n-2) u_{\varepsilon}^{2^{*}-1}$. We nav proceed to carefully estimate each port of the quotient $\dot{Q}(\varphi)$:

Seeing as though φ is radial and in normed coovdruates $g_{r r}=1$, we have that

$$
\begin{aligned}
& \int_{m}|\nabla \varphi|^{2} d v a l g=\int_{B_{2 p}}\left|\partial_{r} \varphi\right|^{2} \sqrt{d d g} d x \leqslant \int_{B_{2 p}}\left|\partial_{r} \varphi\right|^{2}\left(1+C r^{k}\right) d x \\
&=\int_{B_{\rho}}\left|\nabla u_{\varepsilon}\right|^{2} d x+C \int_{B_{p}} r^{k}\left|\nabla u_{\varepsilon}\right|^{2} d x \\
&+\int_{B_{2 \rho} \backslash B_{\rho}}\left|\nabla\left(\eta u_{\varepsilon}\right)\right|^{2}\left(1+C r^{k}\right) d x
\end{aligned}
$$

Computing directly from the definition of $n \varepsilon$ shows that

$$
\left|\partial_{r} u_{\varepsilon}\right| \leq(n-2) \varepsilon^{(n-2) / 2} r^{1-n}
$$

and so it follows immediakly that the last two integrals are $\theta\left(\varepsilon^{n-2}\right)$, Next, integrate in parts in the first integral, using $-\Delta u_{\varepsilon}=n(n-2) u_{\varepsilon}^{2 m-1}$:

$$
\begin{aligned}
\int_{B_{\rho}}\left|\nabla u_{\varepsilon}\right|^{2} & =n(n-2) \int_{B_{\rho}} u_{\varepsilon}^{2 *}+\int_{\partial B_{\rho}} u_{\varepsilon} \partial_{r} u_{\varepsilon} \\
& <n(n-2) \int_{B_{\rho}} u_{\varepsilon}^{2^{*}}
\end{aligned}
$$

as $\partial_{r} u_{\varepsilon}<0$. Thus, sine $\frac{2}{n}+\frac{2}{2^{n}}=1$,

$$
\begin{aligned}
\int_{B_{p}}\left|\nabla u_{\varepsilon}\right|^{2} & <n(n-2)\left(\int_{B_{\rho}} u_{\varepsilon}^{2+}\right)^{\frac{2}{n}}\left(\int_{B_{\rho}} u_{\varepsilon^{2 *}}\right)^{2 / 2 *} \\
& =\lambda\left(S^{n}\right)\left(\int_{B_{p}} u_{\varepsilon}^{2+}\right)^{2 / n}
\end{aligned}
$$

Altogether,

$$
\int_{M}|\nabla \varphi|^{2} d v o l g \leqslant \lambda\left(S^{n}\right)\left(\int_{S_{p}} u_{\varepsilon}^{2 n}\right)^{2 / n}+c \varepsilon^{n-2} .
$$

Next, observe that

$$
\begin{aligned}
\int_{M} \varphi^{2^{*}} d v d y & =\int_{B_{\rho}} u_{\varepsilon}^{2 *} \sqrt{\operatorname{det} g} d x+\int_{B_{2 p} \mid B_{\rho}}\left(\eta u_{\varepsilon}\right)^{2^{*}} \sqrt{d e t g} d x \\
& \geqslant \int_{B_{\rho}} u_{\varepsilon}^{2^{*}} d x-C \int_{B_{p}} r^{k} u_{\varepsilon}^{2^{x}} d x-\int_{B_{2 p} \mid B_{p}} u_{\varepsilon}^{2^{*}}\left(1+C_{r}^{k}\right) d x \\
& \geqslant \int_{B_{\rho}} u_{\varepsilon}^{2+} d x-C \varepsilon^{n} .
\end{aligned}
$$

Lastly, we estin-te the scalar curvature term. Choosing at least k $\geqslant S$ ensures that $S=\theta\left(r^{2}\right)$ and $\Delta S(p)=-|W(p)|^{2} / 6$. Since at p we have $\Gamma_{i j}^{\prime j}(p)=0$ and $\partial_{n} g_{i j}(p)=0$, it follows that $S(p)=S_{i i}(p)=0 \quad \forall i$. Thus

$$
S=\frac{1}{2} S_{i j}(p) x^{i} x^{j}+\theta\left(r^{3}\right)
$$

and we obtain

$$
\begin{align*}
& \int_{M} s \varphi^{2} d u \\
& \text { and we obtain } \\
& \int_{M} S \varphi^{2} d v a l_{j} \leq\left(1+C r^{k}\right) \int_{B_{2 \rho}}\left(\frac{1}{2} S_{: i j}(p) x^{i} x^{j}+\theta\left(r^{3}\right)\right) \eta^{2} u_{\varepsilon}^{2} d x \\
& \int_{\varepsilon \ll 1} \bigcap_{\varepsilon>1} \\
& \leq\left(1+C r^{n}\right)\left\{\frac{1}{2} \int_{B_{2 p}} S_{: i j}(p) x^{i} x^{j} \eta^{2} u_{\varepsilon}^{2} d x\right. \\
& \left.+C \int_{B_{2} \rho} \eta^{2} u_{\varepsilon}^{2} r^{3} d x\right\} \\
& r=|x| \\
& =\left(1+C_{r} k\right)\left\{\frac{1}{2} \int_{0}^{2 p} \eta^{2} u_{\varepsilon}^{2} \int_{(x)=r} S_{i i j}(p) x^{i} x^{j} d \mathcal{U}^{n-1} d r\right. \\
& \text { an } \\
& \left(\int_{|x|=r} x^{i} x^{j} d x^{n-1}=\frac{\omega_{n-1}}{n} r^{n+1} \delta_{i j}\right) \\
& \left.+c \int_{0}^{2 \rho} \eta^{2} u_{\varepsilon}^{2} \int_{|x|=r} r^{n+2} d x^{n-1} d r\right\} \\
& =\left(1+C r^{k}\right)\left\{\frac{\omega_{n-1}}{n} \Delta S(p) \int_{0}^{2 \rho} \eta^{2} u_{\varepsilon}^{2} r^{n+1} d r\right.
\end{align*}
$$

Technical lemma: Let $k>-n$. As $\varepsilon \searrow 0$,

$$
I(\varepsilon):=\int_{0}^{2 p} u_{\varepsilon}^{2} r^{n+k-1} d r
$$

satisfies

$$
I(\varepsilon)= \begin{cases}\theta\left(\varepsilon^{k+2}\right) & n>k+4 \\ \theta\left(\varepsilon^{k+2}|\log \varepsilon|\right) & n=k+4 \\ O\left(\varepsilon^{n-2}\right) & n<k+4\end{cases}
$$

Applying this to the first integral, we have

$$
\frac{\omega_{n-1}}{n} \Delta S(p) \int_{0}^{2 \rho} \eta^{2} u_{\varepsilon}^{2} r^{n+1} d r \leqslant-C|w(\rho)|^{2} \begin{cases}\varepsilon^{\eta}|\log \varepsilon| & \text { if } n=6 \\ \varepsilon^{n} & \text { if } n \geqslant 7\end{cases}
$$

and in the second,

$$
c \omega_{n-1} \int_{0}^{2 \rho} \eta^{2} u_{\varepsilon}^{2} r^{n+2} \partial r=\left\{\begin{array}{l}
\theta\left(\varepsilon^{s}\right) \quad n \neq 7 \\
\theta\left(\varepsilon^{s}|\log \varepsilon|\right)=\theta\left(\varepsilon^{s}\right)
\end{array}\right.
$$

Thus, $\quad \int_{M} s \varphi^{2} d v a l z \leq \begin{cases}-c|w(p)|^{2} \varepsilon^{4}|\log \varepsilon|+\theta\left(\varepsilon^{s}\right) & n=6 \\ -c|\omega(p)|^{2} \varepsilon^{4}+\theta\left(\varepsilon^{s}\right) & n \geqslant 7\end{cases}$

Altugethus, we conclude that

$$
\begin{aligned}
& Q(\varphi)=\frac{\int c_{n} \mid \nabla \varphi I^{2} d v a l_{g}+\int S \varphi^{2} d v o l_{g}}{\left(\int \varphi^{v} d v o l_{g}\right)^{2 / 2 *}} \\
& \leqslant\left[\lambda\left(S^{n}\right)\left(\int_{B_{p}} u_{\varepsilon}^{2 x}\right)^{2 / n}+C \varepsilon^{n-2}\right. \\
& +(1+c, k)\left\{\begin{array}{ll}
-c|\omega(p)|^{2} \varepsilon^{4}|\log \varepsilon|+\theta\left(\varepsilon^{5}\right) & n=6 \\
-c \mid \omega(p))^{2} \varepsilon^{4}+\theta\left(\varepsilon^{5}\right) & n \geqslant 7
\end{array}\right] \\
& \text { - }\left(\int_{B_{f}} u_{\varepsilon}^{2+} d x\right)^{2 / 2^{+}}\left(1+\theta\left(\varepsilon^{5}\right)\right) \\
& = \begin{cases}\lambda\left(S^{n}\right)-C|\omega(p)|^{2} \varepsilon^{n}|\log \varepsilon|+\theta\left(\varepsilon^{5}\right) & n=6 \\
\lambda\left(S^{n}\right)-C|\omega(p)|^{2} \varepsilon^{n}+\theta\left(\varepsilon^{5}\right) & n \geqslant 7\end{cases}
\end{aligned}
$$

Sine $|W(p)|>0$, for small enough $\varepsilon>0$ we obtain our desiend result.

That jut leaves us wondering about mavifills which have dimensions $3,4,0,5$, or whichar loci. conformally Flat. Schoen was able to dispense with all of these cases in one result. To begin, me need to return to the topic of stereographic projections.

As before, well set $\psi: \mathbb{S}^{n} \backslash\{N\} \rightarrow \mathbb{R}^{n}$ as the standard stere "chic pijection but this time we focus on the confungl factor G on $S^{n} \backslash\{N\}$ defined by

$$
\hat{g}:=\psi^{*} g_{s+d}=G^{p-2} g_{0} .
$$

Since (\mathbb{R}^{n}, g_{s+t}) has vanishing scalar curvative,

$$
O=\square_{g_{0}} G=-c_{n} \Delta_{g_{0}} G+n(n-1) G \quad \text { on } \mathbb{S}^{n} \backslash\{N\} \text {. }
$$

In fort, it con be shown that this conformal factor G is the Green's operates for $\square_{g_{0} \text { at }} N$! That is,

$$
\square_{g_{0} G}=\delta_{N} \text { on } S^{n} \text {. }
$$

Now, here is Sckoen's idea, which reverses the above sequence of observations. On a closed Rm. mfd (μ, g), we con prove the existence of the Green's function G to D_{g}. If it were known to be positive, then we could use it as a conformal factor, by fixing $p \in M$ and setting

$$
\hat{g}==G^{p-2} g \quad \text { on } \quad \hat{M}==M \backslash\{p\}
$$

This gives a map $0:(\tilde{M}, \hat{g}) \rightarrow(M, g)$ which we call th "stereographic projection of M from p ". This is all dove so that, like in the Euclitenn case,

$$
S_{\hat{g}}=0 \text { on } \hat{M}
$$

Now, if $\lambda(M) \geqslant 0$ then ore can show that $\square g$ has $G>0$. Since the Yam abe problem is easily solved if $\lambda(M) \leq 0$, we con assume from now on that $G>0$. Fix $p t M, g$ a conform metric realizing Graham's conformal normal coordinates $\left\{x^{i}\right\}$.

Theorem: Suppose $\left(M^{n}, g\right)$ as above has $n=3,4,5$, or is coufformally f lat at p. Then $\exists C$ st.

$$
G=r^{2-n}+C+\theta^{\prime \prime}(r) \quad \text { as } r>0
$$

Remark: $f=\theta^{k}\left(r^{m}\right)$ if $\quad \partial \alpha f \in \theta\left(r^{m-|\alpha|}\right)$ fo any $|\alpha| \leq k$.
Just one interesting and useful consequeme of this theorem is that \hat{M} is asymptotically fluent at ∞. We recall:
Def: A Riem.mfj (N, h) is asymptotically flat to order $\tau>0$ if there is a decomposition $N=N_{0} \cup N_{\infty}$ such that N_{0} is compact, N_{∞} is diffeomophic to $\mathbb{R}^{n} \backslash \mathrm{~B}_{r}$ for some $r>0$, and

$$
g_{i j}=\delta_{i j}+\theta^{\prime \prime}(\rho-\tau) \quad \text { us } \rho \pi \infty
$$

Here $p=\operatorname{dist}(-, p)$.
U sing the expansion of G, we can give an expansion of \hat{g} in "inverted nooml coordurtes" $z^{i}==r^{-2} x^{i}$ which throw p to ∞. Indeed , on the nome ball US\\{p\} we let } | z | = \rho and find that (recall \overline { g } = G ^ { p - 2 } g)

$$
\hat{g}_{i j}(z)=\left(1+c \rho^{2-n}+\theta^{\prime \prime}\left(\rho^{1-n}\right)\right)^{p-2}\left(\delta_{i j}+\theta^{\prime \prime}\left(\rho^{2}\right)\right)
$$

and so we see that $(\hat{M}, \hat{\jmath})$ is asymptotically f lat to oud

$$
\tau= \begin{cases}1 & n=3 \\ 2 & n=4, s \\ n-2 & M \text { is loci. confonily flint. }\end{cases}
$$

Now let's proceed to the construction of our test function, using the undustanding we've developer about how the "for-reacher" of (\hat{M}, \hat{g}) behave. To stat, set

$$
u_{\varepsilon}(z):= \begin{cases}u_{\varepsilon}(z) & \text { if } \rho=|z| \geqslant R \\ u_{\varepsilon}(R) & \text { if } \rho=|z| \leqslant R\end{cases}
$$

where again $n_{\varepsilon}(z)=\left(\frac{\varepsilon}{\varepsilon^{2}+|z|^{2}}\right)^{\frac{n-2}{2}}$ is a dilated Subdev-extremel functional on \mathbb{R}^{n}. The game now is to take $\varepsilon \gg 1$ to spread u_{ε} out, and track what happens to $Q_{\hat{g}}\left(u_{\varepsilon}\right)$.
Seeing as though u_{ε} is radial, as $\varepsilon \rightarrow \infty$ we should expect that $Q_{\hat{g}}\left(u_{\varepsilon}\right)$ will depend heavily on what \hat{g} looks like on very large spheres. To this end, we define

$$
h(\rho)=\frac{1}{n \omega_{n} p^{n-1}} \int_{\delta_{\rho}(p)} \partial \sigma_{\rho}=\frac{v o l \hat{g}\left(S_{\rho}\right)}{v o l_{g_{s+t}}\left(S_{\rho}\right)}
$$

Using the metric expansion obtained from the Green's function expansion, we discover that

$$
h(\rho)=1+\left(\frac{N}{k}\right) \rho^{-k}+\theta^{\prime \prime}\left(\rho^{-k-1}\right) \quad(k \text { a dinensioul quath })
$$

(in the causes where M is low. conf. flat or $d \operatorname{cm} 3,4,5$). N is called the distortion coefficient of $\hat{\jmath}$, and it is what ties the yamake problem to general relativity. But first, me notice that this expansion enables us to obtain on estimate fo $Q \hat{g}: \exists C>0$ st.

$$
Q_{\hat{g}}\left(u_{\varepsilon}\right) \leq \lambda\left(S^{n}\right)-C \mu \varepsilon^{k}+\theta\left(\varepsilon^{-k-1}\right) \quad \text { as } \varepsilon>\infty
$$

Thus, knowing this $s>0$ would complete the argument! The remarkable convection which we need is the following result proven by Schoen and Yaw, and the fact tut wite ow hypotheses on $M, N=2 \mathrm{~m}(\hat{g})$:
The Positive Mass Theorem: Let $\left(N^{n}, g\right), n \geqslant 3$, be asymptotically flat to order $\tau>(n-2) / 2$ with $S_{j} \geqslant 0$. Then $m(\hat{g}) \geqslant 0$, with equality iff (N, g) is isometric to $\left(\mathbb{R}^{n}, g_{s t o}\right)$.

The conclusions to the Yamoke Problem is thus as follows:
If (\hat{M}, \hat{g}) is isometric to $\left(\mathbb{R}^{n}, g_{s t t}\right)$, then it is certainly conformal to $\left(\delta^{n}, g_{0}\right)$ and we ore done. Otherwise, ono stereographic projection agone ensues us that $S_{\hat{g}}=0$, so the PMT yields $m(\hat{g})=\frac{1}{2} N>0$. Taking $\varepsilon>21$ cellos us to conclude at last that

$$
\lambda(M)<\lambda\left(S^{n}\right)
$$

